Page 75 4-20ncm-108Pages.pdf Full Version
							
                                Water and Oil Repellent Finishing of Textiles by UV Curing
sil-treated samples, Figure S7: Main
effect plot for water CA on Pymasil-
treated samples, Figure S8: Marginal
Plot for DE Datacolor measurements,
Figure S9: Main Effects Plot for Data-
color measurements, Figure S10: In-
teraction Plot for Datacolor measure-
ments.Systems_Performance.pdf (access-
ed on 21 April 2017).
7.
8.
Acknowledgments: Jersey Mode Spa
is gratefully acknowledged for the fi-
nancial and technical support.
Author Contributions: Monica Peri-
olatto and Lorenzo Tempestini con-
ceived and designed the experiments;
Monica Periolatto performed the exper-
iments and statistical analysis of the
results; Monica Periolatto and Franco
Ferrero analyzed the data and wrote
the paper.
Conflicts of Interest: The authors de-
clare no conflict of interest.
References
1.
2.
3.
4.
5.
6.Bongiovanni, R.; Zeno, E.; Pollicino,
A.; Serafini, P.M.; Tonelli, C. UV-light
induced grafting of fluorinated mono-
mer onto cellulose sheets. Cellulose
2011, 18, 117–126. [CrossRef]
Ferrero, F.; Periolatto, M.; Udrescu, C.
Water and oil-repellent coatings of
perfluoro-polyacrylate resins on cot-
ton fibers: UV curing in comparison
with thermal polymerization. Fiber.
Polym. 2012, 13, 191–198. [CrossRef]
Roy, D.; Semsarilar, M.; Guthrie, J.T.;
Perrier, S. Cellulose modification by
polymer grafting: A review. Chem. Soc.
Rev. 2009, 38, 2046–2064. [Cross-
Ref] [PubMed]
Bongiovanni, R.; Chiappone, A.;
Zeno, E. UV-Grafting: A powerful tool
for cellulose surface modification. In
Cellulose-Based Grafted Copoly-
mers: Structure and Chemistry;
Thakur, V.K., Ed.; CRC Press: Boca
Raton, FL, USA, 2015; pp. 131–132.
Bruen, K.; Davidson, K.; Sydes, D.F.E.;
Siemens, P.M. Benefits of UV-curable
coatings. Eur. Coat. J. 2004, 4, 42.
Improving Process Heating System
Performance: A Sourcebook for In-
dustry. Available online: http://www.
esru. strath.ac.uk/EandE/Sitevisits/
EERE_Improving_Proc_Heating_9.Neral, B.; Šostar-Turk, S.; Von. cina,
B. Properties of UV-cured pigment
prints on textile fabric. Dyes Pigment.
2006, 68, 143–150. [CrossRef]
Ferrero, F.; Periolatto, M.; Ferrario, S.
Sustainable antimicrobial finishing of
cotton fabrics by chitosan UV-graft-
ing: From laboratory experiments to
semi industrial scaleup. J. Clean.
Prod. 2015, 96, 244–252. [CrossRef]
Yuan, H.; Xing, W.; Zhang, P.; Song,
L.; Hu, Y. Functionalization of cotton
with UV-cured flame retardant coat-
ings. Ind. Eng. Chem. Res. 2012, 51,
5394–5401. [CrossRef]
10. Carosio, F.; Alongi, J. Few durable
layers suppress cotton combustion
due to the joint combination of layer
by layer assembly and UV-curing.
RSC Adv. 2015, 5, 71482–71490.
[CrossRef]
11. Chen, W.-H.; Chen, P.-C.; Wang, S.-
C.; Yeh, J.-T.; Huang, C.-Y.; Chen, K.-
N. UV-curable PDMS-containing PU
system for hydrophobic textile surface
treatment. J. Polym. Res. 2009, 16,
601–610. [CrossRef]
12. Ferrero, F.; Periolatto, M.; Sanger-
mano, M.; Bianchetto, S.M. Water-re-
pellent finishing of cotton fabrics by
ultraviolet curing. J. Appl. Polym. Sci.
2008, 107, 810–818. [CrossRef]
13. Periolatto, M.; Basit, A.; Ferri, A.; Bon-
giovanni, R. Wettability and comfort
of cellulosic materials modified by
photo grafting of non-fluorinated oli-
gomers. Cellulose 2016, 23, 1447–
1458.
14. Xue, C.-H.; Jia, S.-T.; Zhang, J.; Ma,
J.-Z. Large-area fabrication of super-
hydrophobic surfaces for practical
applications: An overview. Sci. Tech-
nol. Adv. Mat. 2010, 11, 1–15. [Cross-
Ref] [PubMed]
15. Kasturiya, N.; Bhargava, G.S. Liquid
repellency and durability assess-
ment: A quick technique. J. Ind. Text.
2003, 32, 187–222. [CrossRef] Coat-
ings 2017, 7, 60 12 of 12
16. Mohsin, M.; Sarwar, N.; Ahmad, S.;
Rasheed, A.; Ahmad, F.; Afzal, A.; Za-
far, S. Maleic acid crosslinking of C-6
fluorocarbon as oil and water repel-
NCM-APRIL 2020
75lent finish on cellulosic fabrics. J.
Clean. Prod. 2016, 112, 3525–3530.
[CrossRef]
17. Castelvetro, V.; Francini, G.; Ciardelli,
G.; Ceccato, M. Evaluating fluorinat-
ed acrilic latices as textile water and
oil repellent finishes. Text. Res. J.
2001, 71, 399–406. [CrossRef]
18. Shao, H.; Sun, J.Y.; Meng, W.-D.; Qing,
F.-L. Water and oil repellent and du-
rable press finishes for cotton based
on a perfluoroalkyl-containing multi-
epoxy compound and citric acid. Text.
Res. J. 2004, 74, 851–855. [Cross-
Ref]
19. Lee, H.J.; Michielsen, S. Preparation
of a superhydrophobic rough surface.
J. Polym. Sci. Part B Polym. Phys.
2007, 45, 253–261. [CrossRef]
20. Li, Z.-R.; Fu, K.-J.; Wang, L.-J.; Liu, F.
Synthesis of a novel perfluorinated
acrylate copolymer containing hy-
droxyethyl sulfone as crosslinking
group and its application on cotton
fabrics. J. Mater. Process. Technol.
2008, 205, 243–248. [CrossRef]
21. AATCC/ASTM Test Method TS–018–
Procedure for Absorbency; American
Association of Textile Chemists and
Colorists: Research Triangle Park,
NC, USA, 2014.
22. AATCC TM173–2015–Calculation of
Small Color Difference for Acceptabil-
ity; American Association of Textile
Chemists and Colorists: Research
Triangle Park, NC, USA, 2015.
23. Roe, B.; Zhang, X. Durable hydropho-
bic textile fabric finishing using silica
nanoparticles and mixed silanes. Text.
Res. J. 2009, 79, 1115–1122. [Cross-
Ref]
© 2017 by the authors. Licensee MDPI,
Basel, Switzerland. This article is an open
access article distributed under the terms
and conditions of the Creative Commons
Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/).
“Once you choose hope,
anything’s possible.”
- Christopher Reeve